KINETIC STUDIES BY DSC ON THE THERMAL DECOMPOSITION OF CALCIUM OXALATE

R. LOZANO *, J. ROMAN and F. DE JESUS

Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid (Spain)

A. JEREZ, M. GAITAN and E. RAMOS

Departamento de Química Inorgánica, Facultad de C. Químicas, Universidad Complutense, 28040 Madrid (Spain)

(Received 28 June 1988)

ABSTRACT

In the present paper, we have studied the kinetics of the thermal decomposition of calcium oxalate monohydrate, using a new method of kinetic study employing data obtained from differential scanning calorimetry, as previously proposed by us.

Initial products and those obtained following decomposition have been identified by infrared spectroscopy and X-ray powder diffraction.

A comparison between the results obtained in this paper and those reported in the literature has also been made.

INTRODUCTION

The determination of kinetic parameters by non-isothermal methods offers advantages over conventional isothermal studies [1].

However, the methods usually employed for kinetic analyses [2-9] lead to ambiguous results, especially if the reaction studied is diffusion controlled.

In other papers, we have reported on kinetic studies of several molybdenum(IV) and vanadium(IV) complexes using the procedure of Thomas and Clarke [10–12]. However, the results obtained are only over a small portion of the range of the reaction.

Recently, we have reported on a new method of studying the kinetics of non-isothermal decomposition reactions of solids using DSC [13,14].

The object of the present paper is to demonstrate the validity of the proposed method using a well-known highly purified inorganic product,

^{*} Author to whom all correspondence should be addressed.

whose kinetic parameters have been previously studied by other workers [3,15].

The thermal decomposition of $CaC_2O_4 \cdot H_2O$ occurs with the loss of H_2O and CO molecules as shown in reactions 1 and 2 respectively

 $CaC_2O_4 \cdot H_2O \to CaC_2O_4 + H_2O \tag{1}$

(2)

 $CaC_2O_4 \rightarrow CaCO_3 + CO$

EXPERIMENTAL

Analyses of compounds

The $CaC_2O_4 \cdot H_2O$ is a commercial product of C. Erba, RPE quality, and was used as supplied.

Infrared spectra were determined on a Perkin-Elmer spectrophotometer model 283 using KBr pellets.

The X-ray diffraction was carried out on a Siemens Cristalloflex model D-500 using Cu $K\alpha$ radiation.

Thermogravimetric analysis

Thermogravimetric analysis was performed on a Mettler HE-20 thermobalance. The constants were: heating rate, 5°C min⁻¹; TG range, 5 mV; chart speed, 20 cm h⁻¹; sample mass, 5 mg; reference, Al₂O₃; and thermocouple, Pt/Pt-Rh 80%.

The analysis was made in a dynamic nitrogen atmosphere between 25 and 600 °C. A platinum pan was used.

Differential scanning calorimetry

Differential scanning calorimetry was performed using a Mettler TA 3000 system with a Mettler DSC-20 differential scanning calorimeter.

The scanning rate used was 5° C min⁻¹ and samples of about 5 mg were used so as to render insignificant the temperature non-uniformity within the sample. An aluminium pan was used under a dynamic nitrogen atmosphere. The instrument calibration was checked periodically with standard samples of indium (99.99% purity). Several runs were made in all cases.

RESULTS AND DISCUSSION

The DSC curve of $CaC_2O_4 \cdot H_2O$ shows an endothermic peak between 126 and 196°C and an exothermic process between 452 and 500°C (Fig. 1).

Fig. 1. DSC and TG curves of $CaC_2O_4 \cdot H_2O$.

 ΔH , α , T and α' values obtained from the DSC curve of CaC₂O₄·H₂O

ΔH	α	T	α'	
(mJ)	(K^{-1})	(°C)	(K^{-1})	
79.91	0.0504	152.0	0.0069	
99.81	0.0630	154.0	0.0080	
123.47	0.0780	156.0	0.0093	
150.85	0.0952	158.0	0.0107	
182.24	0.1151	160.0	0.0124	
217.35	0.1373	162.0	0.0142	
256.99	0.1623	164.0	0.0162	
302.41	0.1910	166.0	0.0185	
353.14	0.2230	168.0	0.0210	
410.67	0.2594	170.0	0.0237	
474.55	0.2997	172.0	0.0267	
547.81	0.3460	174.0	0.0297	
626.37	0.3956	176.0	0.0329	
715.36	0.4519	178.0	0.0361	
811.71	0.5127	180.0	0.0391	
918.22	0.5800	182.0	0.0416	
1032.10	0.6519	184.0	0.0434	
1154.30	0.7292	186.0	0.0439	
1285.50	0.8120	188.0	0.0418	
1415.20	0.8939	190.0	0.0358	
1527.00	0.9646	192.0	0.0236	

TABLE 2

Kinetic equations

Mechanism (rate-controlling process)	$f(\alpha)$
D1 (One-dimensional diffusion)	$\frac{1}{2} \alpha$
D2 (Two-dimensional diffusion)	$\left[-\ln(1-\alpha)\right]^{-1}$
D3 (Three-dimensional diffusion: Jander equation)	$\frac{3}{2}(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}$
D4 (Three-dimensional diffusion:	$3/[2(1-\alpha)^{1/3}-1]$
Ginstling-Brounshtein equation)	
F1 (Random nucleation)	$1-\alpha$
R2 (Phase-boundary reaction: cylindrical symmetry)	$2(1-\alpha)^{1/2}$
R3 (Phase-boundary reaction: spherical symmetry)	$3(1-\alpha)^{2/3}$

The mass loss accompanying the first transition corresponds on the TG curve, to the loss of the H_2O molecule; X-ray powder diffraction identified the product as anhydrous calcium oxalate. The next exothermic process corresponds to the loss of CO, the residue being identified as CaCO₃, by infrared spectroscopy and X-ray powder diffraction. Table 1 shows the data for the first transition, obtained from the DSC curve.

Using the mechanisms reported in the literature [1] (see Table 2), we have plotted $(\Delta \ln \alpha' - \Delta \ln f(\alpha))/\Delta \ln(1-\alpha)$ versus $\Delta(1/T)/\Delta \ln(1-\alpha)$, showing the results for r (the correlation coefficient), m (the slope), i (the intercept value) and E_a (the activation energy), obtained for the seven mechanisms (Table 3).

It can be seen that only when the analysis was performed with the R2 mechanism [phase boundary reaction: cylindrical symmetry], was the intercept value close to zero (see Table 3), with an E_a value of 118.00 kJ mol⁻¹.

In order to test the validity of the above conclusions, we have substituted the seven forms of $f(\alpha)$ into the Arrhenius equation in logarithmic form, obtaining eqn. (3)

$$\ln \alpha' = \ln(A/\beta) - E_{\rm a}/RT + \ln f(\alpha)$$

or

$$\ln \alpha' - \ln f(\alpha) = \ln(A/\beta) - E_a/RT$$
(3)

The plot of $(\ln \alpha' - \ln f(\alpha))$ versus 1/T should be a straight line with a slope of $-E_a/R$ and an intercept value of $\ln(A/\beta)$. If the proposed mechanism is correct, the activation energy value should be the same as that obtained previously, as, in fact, is the case. Table 4 shows the values of the activation energy for both analyses, corresponding to the dehydration of $CaC_2O_4 \cdot H_2O$. Only the R2 mechanism shows a very good agreement.

Results obtained using the seven mechanisms for the plot of $(\Delta \ln \alpha' - \Delta \ln f(\alpha))/\Delta \ln(1-\alpha)$ versus $\Delta(1/T)/\Delta \ln(1-\alpha)$ for CaC₂O₄·H₂O

Mechanism D1 Correlation coefficient, r = -0.9982Slope, m = -33962.60Intercept value, i = 1.1604Activation energy, $E_a = 282.37 \text{ kJ mol}^{-1}$ Mechanism D2 Correlation coefficient, r = -0.9984Slope, m = -34120.59Intercept value, i = 0.7510Activation energy, $E_a = 283.69 \text{ kJ mol}^{-1}$ Mechanism D3 Correlation coefficient, r = -0.9984Slope, m = -34102.03Intercept value, i = 0.2405Activation energy, $E_a = 283.53 \text{ kJ mol}^{-1}$ Mechanism D4 Correlation coefficient. r = -0.9984Slope, m = -34101.95Intercept value, i = 0.5738Activation energy, $E_a = 283.53 \text{ kJ mol}^{-1}$ Mechanism F1 Correlation coefficient, r = -1.0000Slope, m = -14193.39Intercept value, i = -0.5000Activation energy, $E_a = 118.00 \text{ kJ mol}^{-1}$ Mechanism R2 Correlation coefficient, r = -1.0000Slope, m = -14193.39Intercept value, i = -0.0003Activation energy, $E_a = 118.00 \text{ kJ mol}^{-1}$ Mechanism R3 Correlation coefficient, r = -1.0000Slope, m = -14193.39Intercept value, i = -0.1666Activation energy, $E_a = 118.00 \text{ kJ mol}^{-1}$

Therefore, the process of thermal dehydration of $CaC_2O_4 \cdot H_2O$ follows mechanism R2 (phase boundary reaction: cylindrical symmetry), and the values of the reaction order, the activation energy and the pre-exponential Arrhenius factor are 0.50, 118.00 kJ mol⁻¹ and 6.597 × 10¹¹ s⁻¹ respectively.

These values, obtained using the proposed method, are in agreement with those previously reported by other workers [3,15].

TA	BL	E	4
----	----	---	---

Activation energy	values	obtained	by	using	the seven	mechanisms	for	CaC ₂ O ₄	·H.(Э
			~	<i>u</i>					(<u></u>	

Mechanism	E_a^a	E _a ^b	Difference	
	$(\tilde{kJ} mol^{-1})$	$(kJ mol^{-1})$	(%)	
D1	282.37	192.83	31.71	
D2	283.69	230.14	18.87	
D3	283.53	276.87	2.34	
D4	283.53	246.37	13.10	
F1	118.00	163.76	- 38.77	
R2	118.00	118.02	-0.01	
R3	118.00	133.26	- 12.93	

^a Calculated from the plot of $[\Delta \ln \alpha' - \Delta \ln f(\alpha)]/\Delta \ln(1-\alpha)$ versus $\Delta(1/T)/\Delta \ln(1-\alpha)$. ^b Calculated from the plot of $\ln \alpha' - \ln f(\alpha)$ versus 1/T.

TABLE 5

 ΔH , α , T and α' obtained from the DSC curve of CaC₂O₄

$\overline{\Delta H}$	α	T	α'	
(mJ)	(K^{-1})	(°C)	(K^{-1})	
141.56	0.0828	465.0	0.0155	
166.40	0.0974	466.0	0.0168	
192.42	0.1126	467.0	0.0181	
221.64	0.1297	468.0	0.0194	
251.54	0.1472	469.0	0.0209	
286.15	0.1675	470.0	0.0224	
321.10	0.1880	471.0	0.0240	
359.92	0.2107	472.0	0.0256	
399.08	0.2336	473.0	0.0274	
442.95	0.2593	474.0	0.0291	
487.67	0.2855	475.0	0.0309	
536.26	0.3140	476.0	0.0327	
586.36	0.3433	477.0	0.0346	
639.33	0.3743	478.0	0.0364	
693.81	0.4062	479.0	0.0382	
752.51	0.4406	480.0	0.0399	
812.89	0.4759	481.0	0.0415	
877.14	0.5136	482.0	0.0429	
944.43	0.5530	483.0	0.0440	
1016.10	0.5949	484.0	0.0447	
1088.30	0.6372	485.0	0.0451	
1161.80	0.6802	486.0	0.0450	
1236.00	0.7237	487.0	0.0443	
1311.00	0.7676	488.0	0.0428	
1380.80	0.8085	489.0	0.0408	
1446.40	0.8469	490.0	0.0381	
1502.60	0.8789	491.0	0.0352	
1555.20	0.9106	492.0	0.0313	
1597.20	0.9352	493.0	0.0273	

Results obtained using the seven mechanisms for the plot of $(\Delta \ln \alpha' - \Delta \ln f(\alpha))/\Delta \ln(1-\alpha)$ versus $\Delta(1/T)/\Delta \ln - \alpha$ for CaC₂O₄

Mechanism D1 Correlation coefficient, r = -0.9936Slope, m = -129688.2Intercept value, i = 1.49303Activation energy, $E_a = 1078.28 \text{ kJ mol}^{-1}$ Mechanism D2 Correlation coefficient, r = -0.9943Slope, m = -131004.1Intercept value, i = 1.10922Activation energy, $E_a = 1089.22 \text{ kJ mol}^{-1}$ Mechanism D3 Correlation coefficient, r = -0.9942Slope, m = -130850.5Intercept value, i = 0.5957Activation energy, $E_{\rm a} = 1087.94 \text{ kJ mol}^{-1}$ Mechanism D4 Correlation coefficient, r = -0.9942Slope, m = -130850.3Intercept value, i = 0.9291Activation energy, $E_a = 1087.94 \text{ kJ mol}^{-1}$ Mechanism F1 Correlation coefficient, r = -1.0000Slope, m = -47073.64Intercept value, i = -0.3333Activation energy, $E_a = 391.38 \text{ kJ mol}^{-1}$ Mechanism R2 Correlation coefficient, r = -1.0000Slope, m = -47073.66Intercept value, i = 0.1666Activation energy, $E_a = 391.38 \text{ kJ mol}^{-1}$ Mechanism R3 Correlation coefficient, r = -1.0000Slope, m = -47073.62Intercept value, i = -0.0002Activation energy, $E_a = 391.38 \text{ kJ mol}^{-1}$

In Table 5, we list the data for the process of decarbonylation of CaC_2O_4 . Table 6 shows r, m, i and E_a values for the seven mechanisms tested.

It can be seen that only the R3 mechanism (phase boundary reaction: spherical symmetry) has an intercept value close to zero, with an E_a value of 391.38 kJ mol⁻¹,

Mechanism	E _a ^a	E _a ^b	Difference	
	$(kJ mol^{-1})$	$(kJ mol^{-1})$	(%)	
D1	1078.28	542.86	49.65	
D2	1089.22	697.87	35.92	
D3	1087.94	889.17	18.27	
D4	1087.94	764.13	29.76	
F1	391.38	516.42	- 31.94	
R2	391.38	328.88	15.96	
R3	391.38	391.39	0.00	

Activation energy values obtained using the seven mechanisms for CaC_2O_4

^a Calculated from the plot of $[\Delta \ln \alpha' - \Delta \ln f(\alpha)]/\Delta \ln(1-\alpha)$ versus $\Delta(1/T)/\Delta \ln(1-\alpha)$. ^b Calculated from the plot of $\ln \alpha' - \ln f(\alpha)$ versus 1/T.

When we test our method by plotting $\ln \alpha' - \ln f(\alpha)$ versus 1/T, we obtain new values for the activation energy, as shown in Table 7, compared with the E_a values previously calculated. The R3 mechanism shows only a slight percentage difference in E_a value.

Therefore, the process of thermal decarbonylation of calcium oxalate is controlled by mechanism R3 (phase boundary reaction: spherical symmetry); the reaction order, consequently, is 0.66, the activation energy is 391.38 kJ mol⁻¹ and the pre-exponential Arrhenius factor has a value of 8.611×10^{24} s⁻¹.

REFERENCES

- 1 W.W. Wendlandt, Thermal Methods of Analysis, Wiley, New York, 1974.
- 2 A.E. Nerwkirk, Anal. Chem., 32 (1960) 1558.
- 3 E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.
- 4 A. Jerez, J. Therm. Anal., 26 (1983) 315.
- 5 H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.
- 6 A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68.
- 7 C.D. Doyle, J. Appl. Polymer. Sci., 5 (1961) 285.
- 8 T.R. Ingraham and P. Marrier, Can. J. Chem. Eng., (1964) 161.
- 9 B.N.N. Achar, G.W. Brindley and J.H. Sharp, Proc. Int. Clay Conf., Jerusalem, 1, (1966) 67.
- 10 J.M. Thomas and T.A. Clarke, J. Chem. Soc. A, (1968) 457.
- R. Lozano, J. Martínez, A. Martínez and A. Doadrio, Polyhedron, 2 (1983) 99; 108 (1986)
 1.
- 12 R. Lozano, J. Roman and A. Moragues, Thermochim. Acta, 108 (1986) 1.
- 13 R. Lozano, J. Román, A. Moragues, A. Jerez and E. Ramos, Transition Met. Chem., 12 (1987) 289.
- 14 R. Lozano, J. Román, F. de Jesús, A. Jerez, M. Gaitán and E. Ramos, Thermochim. Acta, 141 (1989) 261.
- 15 E. Segal and C. Popescu, Thermochim. Acta, 48 (1981) 383.